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ABSTRACT

The ability to predict torsional instability in the
early stages of design can have important consequences
on the design of both conventional and high performance
ships. This thesis develops fast approximate methods of
torsional buckling analysis for particular application
in the concept, feasibility, and preliminary stages of
ship design.

Two simplified models of stiffeners commonly used in
ship construction were presented. The first was an
ideal I section stiffener. The second, a flat bar
stiffener, which was included in this analysis because
of its favorable productional properties and wide
u;Iage. These models, with initial imperfections, were
subjected to axial compressive end loading and the
resultant behavior analyzed. The approach of the
analysis of this thesis was an application of the
energy method to determine the critical buckling stress
instead of the more commonly used equilibrium approach.
Both beam theory and thin plate theory were used in
energy-work relationships in these derivations. Then
the first yield load was determined utilizing the
Perry-Robertson approach. Integrated into all phases of
this exploration was the concept of the geometric
imperfections of the stiffeners.
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NOMENCLATURE

A Nondimensional parameter

a Length of stiffener between transverse supports

b Uniform stiffener spacing

b Plating effective width
a

B Angle of rotation of the stiffener about the toe

B Initial imperfection of the stiffener in terms of a
rotation angle about the toe

B Amplitude of the sinusoidal function for B
° *

B Amplitude of the sinusoidal function for B
0

C Rotational spring constant (moment/length) of the
supporting plating

C Longitudinal warping constant of stiffener

w

D Flexural rigidity of plating

D Flexural rigidity of web plating of stiffener
w

d Depth of flat bar stiffener; overall depth of Tee
stiffener

d Depth of stiffener to midthickness of flange
c

d Depth of web
w

E Young's Modulus of the material

I-



V Membrane strain
xI

f Width of stiffener flange
w

8 Shear Modulus of the material

h Height of neutral axis of plate-stiffener
combination from midplane of plating

I Effective vertical moment of inertia of stiffener
and associated effective width of plating

r Polar moment of inertia of stiffener about toe
P

I Vertical moment of inertia of stiffener alone about
t

toe

I Moment of inertia of stiffener about web plane

z

J St. Venant's torsion constan for stiffener

L Reduced slenderness ratio

M(x) Moment developed in the stiffener by the total
torque

m Mode number

P Axial end load

s Height of stiffener shear center above toe

a Elastic axial torsional buckling stress in
CR

stiffener (critical stress)

a Elastic axial torsional buckling stress limit of
CL

stiffener (classical stress)

0 Axial stress in stiffener
C

&
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p .1

0 Axial stress component
x

(N) Maximum compressive stress developed by
x MAXT

the torque

6 Tensile yield stress of material
y

T Amplitude of the sinsoidal torque function
0

T Total torque developed in the stiffener structure
by the loading

T St. Venant's torque developed in the stiffener
SV

T Warping torque developed in the stiffener
w

t Plate thickness

t Stiffener flange thickness
f

t Stiffener web thickness
w

u Displacement in the longitudinal (x) direction

V Total strain energy of the structure

v Sideways flexure (y) of stiffener

.

v Initial imperfection of stiffener in horizontal (y)
direction

W Total work of the applied force

w Vertical flexure (z) of stiffener

7



w Initial imperfection of the stiffener in the

vertical (z) direction

z Height of stiffener centroid above toe

V Poisson's Ratio

Note: xy or z subscripts indicate partial derivatives

with respect to those coordinates . These are used

particularly with v, v , w? w , B1 B

S
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INTRODUCTION

The subject of this thesis is to develop a

simplified analytical method of predicting torsional

buckling of stiffeners used in ship structures.

Torsional buckling or instability is the phenomena by

which a column, at a certain axial load, fails suddenly

in a combined mode of twist and lateral bending of the

cross section (reference 7). Figure (0-1a) (from

reference 6) illustrates the failure mode referred to

here as torsional buckling - in this case for a flat

bar stiffener. Figure (0-1b) illustrates the failure

mode of the tripping phenomenon which is not covered in

this analysis. Figure (0-2) (reference 6) is the

experimental load deflection curve for the failure of a

flat bar stiffener under an axial load. Point A of the

solid (experimental) curve of figure (0-2) is the

ultimate strength load. As can be seen from figure (0-

2), the curve proceeds in a downward fashion - the bar

looses stiffness and fails from this point.

The ability to predict torsional instability

in the early stages of design can have important

consequences on the design of both conventional and

high performance ships. It is the intention of this

thesis to develop fast approximate methods of torsional

11



Figure (0-1a) Torsional Duckling

Figure (0-1b) Tripping

Figure (0-1) Characterization of Torsional Duckling
and Tripping in a Flat Bar Stiffener
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buckling analysis for particular application in the

concept, feasibility, and preliminary stages of ship

design.

To this end, two simplified models of stiffeners

commonly used in ship construction will be presented.

The first is an ideal I section stiffener. The second,

a flat bar stiffener, which is included in this

analysis because of its favorable productional

properties and wide useage. These models, with initial

imperfections, will be subjected to axial compressive

end loading and the resultant behavior analyzed. The

approach of the analysis of this thesis will be an

application of energy methods to determine the critical

buckling stress instead of the more commonly used

equilibrium approach. Both beam theory and thin plate

theory are used in energy-work relationships in these

derivations. Then the first yield load is determined

utilizing the Perry-Robertson approach as described in

references (9914). Integrated into all phases of this

exploration will be the concept of the geometric

imperfections of the stiffeners.

It is the intention of this thesis, using the above

mentioned approach, to lay groundwork which would have

the potential for future expansion to include mode

interaction - to be able to easily analyze combined--

14



loadings etc..

Particular emphasis is placed here upon inclusion

of the geometrical initial deformities of the

stiffeners which occur during the manufacture and

through day to day usage of the ship. It is well known

that these geometric imperfections can drastically

reduce the strength of the structural member. But

current design standards (references 10,11 etc) have

not tried to quantify these values. Some design codes

(examples reference 10) have specified tolerance limits

of various geometric parameters which must be met

before the design formulae are considered valid.

Granted, in the concept, feasibility and preliminary

stages of ship design where the ship only exists on

paper, the designer would have no knowledge of the end

resulting imperfections of the actual ship. Hopefully,

in the future, with the advent of better production

control in shipyards and the incursion of the computer

into ship production facilities, this information will

be collected and statistically analyzed.

In addition, once the ship is manufactured, these

formulae will provide a quick and easy evaluation of

the actual critical buckling stress in terms of

physical parameters. Thus, this analysis has made a

special effort to define the imperfections in easily

15



measured terms. This analysis measures the horizontal

or vertical movement of the shear center of the

stiffener at its point of greatest deflection and

assumes a simple sinusoidal distribution. Knowledge of

the web depth easily converts the imperfection into a

rotational angle. Here, the stiffener is considered to

rotate about its toe or base. In other words, the base

plating is considered much larger and stiffer. Figure

(0-3) illustrates this simplified concept for a Tee

sti1ffenber.

Zw

Figure (0-3) Tee Stiffener

Currently the method of handling the stiffener

failure problem is incorporated into the use of factors

of safety. But, with recent attempts to further

optimize ship structures - in particular to minimize

16



1

the amount of weight of a ship that must be devoted to

its structure - better, yet reliable, methods must be

devised. Remember, with a ship, less weight in the

structure equates to more weight for the payload be it

weapons for a military ship or cargo for a civilian

ship.

This thesis concludes with a comparison between the

formulae derived from the simplified models presented

here and published formulae, published finite element

analysis, and experimentally derived results.

17



1. DESCRIPTION OF MODELS

Torsional buckling or instability is characterized

by a twisting of the stiffener about its line of

attachment to the plating. This deformation pattern

involves both sideways and vertical flexure (vw) and

rotation (B) of the stiffener as shown in figure (1) as

described in reference (3).

r<4

Figure (1-1a) Coordinate System

zZ

Figure (1-1b) Undeformed Figure (1-1c) Deformed

Figure (1-1) Characterization of Torsional Buckling

18



The first model considered is a simplification of

an ideal I-section. It consists of an I-beam with zero

torsional rigidity. The web of the I-beam transmits

only shear forces. ifn effect, it looks like two unequal

flanges:

I-beam Stress Distribution

Figure (1-2) Model I

k This model has been considered in reference (4).

However. reference (4) used an equilibrium approach and

initial imperfections were considered as an

eccentricity of the axial load. The resulting equations

of the critical stress were quite complicated.

Figure (1-3) Illustrates the geometric parameters

IL of this model.

19



AA

dc
dw  d

V V

Figure (1-3) - Geometric Torsional Buckling
Parameters for Model

- oment of inertia about the web plane (top flange

z
only)

3

I - (t f )/12
z fw

s - Height of %hear center above toe (origin) (top
flange only)

s=d

c

C - Longitudinal warping constant about shear center

of stiffener alone (top flange only)

C -

I - Vertical moment of inertia about toe (top flange
t

only)

2 2
I t f t (d + 1/12)t f
t wf c f

28



p Polar moment of inertia about too

p t z

nz -Height of centroid above too

z - d
c

J -St. Venant's torsion constant (top flange only)

J J (ft )/3
wf

21



The second model considered is the simple flat bar

stiffener illustrated in figure (1-4).

II

Figure (1-4) Model II -Flat bar stiffener.

Figure (1-5) illustrates the geometric parameters

of this model.

IL

22
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I -- tw

d3

II

Figure (1-5) - Geometric Torsional Buckling
Parameters for Model II

I - Moment of inertia about the web plane
2

(web only)
3

I (d t )/12
2 W W

s - Height of shear center above Joe (origin)
(web only)

sad /2
w

C - Longitudinal warping constant about shear
w

center of stiffener alone

C -

I - Vertical moment of inertia about toe (web only)
t 3

a- (t d )/3
t w w

I - Polar moment of inertia about toe
P I -I +1

p t z

23



z -Height of centroid above toe

z - d /2

J St. Venant's torsion constant
3

J - (d t )/3
w w

D -Flexural rigidity of the web plate

3
Et

D

24



2. MODEL I - TORSIONAL BUCKLING UNDER AXIAL LOADS

2.1 RRyRg2ment of Ii t rain E ergX g!ggalioL

Since Model I basically consists of two unequal

flanges with the top flange rotating about the bottom

flange, the torsional rigidity is considered only for

the top flange. Thus the strain energy equation

consists of three parts (reference 1). The first term

represents sideways bending. The second term represents

longitudinal warping. The third term represents the

torsional rigidity of the top flange alone. The strain

energy for a length a is:

a  2 2 2
V - 1/2 (EI v + EC B + GJB )dx

Z xx w xx x

Also from geometrical properties we have (see figure

1-3)s

v S sB

Thusf

V 1/2 sB + EC B + GJB ) dx

S z xx w xx x

0 z2 2 2

V - 1/2 E(I s + C )B + GJB 3 dx
S z w xx x

25



The following choice of B is made, in order to

meet certain boundary conditions (ie B - 0 at x=,
xx

x=a ) and to 
keep B simple.

B - B sin (mjx/a)
0

Thus for Model I:

22 2
V 1/4 a B (m)7/a) C E(i s + C )(mr/a) + GJ 3

0 Z W

26



r 2.2 i& Q2n~Ig.L2

Before development of the virtual work equation, a

note should be said about the sign convention used

here. Compression is held to be a positive stress and

tension as negative. The following figures illustrate

the sign convention used here.

iz

Figure (2-1) Sign convention for inplane axial and
shear stress components.

27



/

Figure (2-2) Application of sign convention for
case of an axial load.

28



2.3 Develo2mgnt of VitulWok MAU2DiQ,

Model I is not assumed to be perfect but rather to

have initial imperfections. These initial imperfections

v ,w and S and the additional deformations vw and B

are illustrated in figure (2-3).

| z

Figure (2-3) Illustration of initial imperfections
v*,w*,B* and additional deformations v,w,B.

The virtual work for the case of an inplane axial

load becomes (reference 1)

W - ff s u(ygz) dy dz

Thus using figure (1-1)9 it can be shown that the

strain of the centroidal axis in the bent

configuration I (membrane strain), is (reference 1)

2 2

I in-u + 1/2(v) + 1/2(w)

29
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for a perfect I section. With imperfect ions, we

subst itutU3

v + v for v

Sw for w

Thus: •*2 *2

N -u + 1/2(v+v ) +I/2(w+w

using the inextenoibility assumptions set:

P x
we have: •*2 *2

u -1/2(v +v) + 1/2(w+w)
K )( x K x

a *2 *2
u 1/2 (v +v ) + (w +w ) 3 dx

where u - u(y,z).

From geometrical relationships (see figure (2-3))

v a zB w a -yB

v " zB w " -yB

(2-1)

v * zB w ft -yB

v a zB w a -yB
x x x x

Substituting and integrating we get:

30



a2 2 a 2 *2

u(y,z) 1/2 + 2z B B + z B"0 Z x x x x _

2 2 2 *2 2 *2+ y B + 2y B B + y B dx

a 2 2 *2
u(yz) , 1/2)0 + y (B + B) dx

x x

*J

Again using the simple choice for B and B v

B - B sin (m x/a)
O

B B 9 sin(m"irx/a)
0

Thus:
(a2 2

u(ygz) - 1/2 +y )C(ml/a)B cos(m/?x/a)
0

• 2
+( (m 7?/a)B cos(mPx/a)] dx

o

ja 2+y2 * 2
u(yz) - 1/2 ( )(B +B

0 0

2

2 *(mr/a)os(m x/a) dx-

u(yz) - 1/2(z +y )(B +B ) (m )/a)
0 0

a
• Cx/2 + (sin(2m7Tx/a)/(4mfl/a)]

0

31
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2 2 *2 2

u(y,z) 1/4(z +y )(B +B ) (mt/a) a
0 0

The work equation now becomes:

2 2 *2 2
W A I [1/4(z +y )(B +B ) (mll/a) a3 dy dz

A x0 0

For the current situation of end loading, W =
x a

*2 2 2
W - a EI/4(B +B) Cm r/a) a3 A(z +y ) dy dz

But note thats

+(z y) dydz I

A

Thus:

•2 2
W - 1/4 6 (B +B ) (m 7'/a) a I

S"oo p

32



2.4 D2_tL^HiDatign of th Crital BuckIinm Stress.

Applying the calculus of variations with respect

to B to the work and strain energy equations yields

0
(reference 5) 8

-22

4w - 1/2 a (B +B ) (mfl/a) a I B
So o p 0

a 2 2

SV - 1/2 a B (mfr/a) CE(I s + C )(m P/a)
0 Z W

+ GJ3SB

0

Applying the principle of minimum potential energy:

V.- 9V -Sw - 0

we get:

JSW 'SV

Solving for B u
C

2 2
CE(I s + C )(m ?/a) + GJ] B

2 0

I B +B

p 0 0

(2-2)

It can be seen by inspection that the lowest

buckling stress occurs for one wave, m = 1, since m

must be an integer. Thus:

33



e CR

As it can easily be seen, as B becomes large
a CR

approaches the limit of u

EE(1 s + C )(m r/a) + 6.3
z N

M -- 2-3-)--
CL

Ip

Figure (2-4) illustrates the behavior of S with
* CR

increasing B + B
0 0

Further simplification and rearranging of equations

K (2-2) and (2-3) provides:

0

CR CL*

B 0 +3 B 3

CR o CR o CRo,

B
0
9 m --------- (2-4)

0

CL CR

34



9c R

Figure (2-4) 9 vs. (B +B)

CR a 0
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2.5 R! ~r inatign 2f 02Ei-s XiaidL24

To determine the first yield load, the total torque

developed in the torsional buckling process must be

first evaluated. This torque will consist of two parts.

The first term consists of the well known St. Venant's

Torque (reference 1). The second term represents the

warping torque (reference 2).

From reference (1):

T-T +T

SV W

wheres

T -GJB
SV x

and from reference (2)1

T rn- El d w
W z c xxx

and from geometry;

w d B
N CX

resulting ins

L2
T E-EldB
W 2 c xxx

Thus the total torque is.

L

36
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Tm GJB -El d B (2-5)
x z c xx

Figure (2-3) illustrates the above equations.

Again a simple choice of B is made, and with m =1:

B - B sin(7 x/a) (2-6)

Equation (2-5) now becomes:

T - BJ(77'/a)B cos(flhx/a)
0

2 3
+ EI d (77/a) B cos(lrx/a)

T - (I7-/&)B cos(7?-x/a)EGJ + El d C7? /a) 3
0~ aC

Choosing a simple sinusoidal shape for T allows:

T -T cos(l?'x/a)

Thus:
2 2

T -(fl1"/a)B CGJ + El d (71a) 3 (2-7)
0 0 z c

To eliminate B ,equation (2-4) is applied to equation
0

(2-7).

B
0

2 2
T C EJ + EI d 31a 20 7 /a) ------ -

0

CL CR

37



From sectional considerations,. an evaluation of the

maximum stress can be made.

Figure_(2-5) Sectional illustration.

The moment developed by the torque in terms of

deflections is (reference 2):

M(x) - - EI w.

2 xx

So the maximum compressive stress developed in the

flange due to the torque isi

-EI d B f
z c xx N

C( ) - . ..-.. . .

x MAXT
21

z

(W) -- Ed B f /2
xMAXT c xxN

Application of the above definition for B (equation

2-4) leavesi

38



Ed f
c w 2

( -) = - (P/a) B sin(-?'x/a)
x MAXT o

2

A choice of x is made such that (W ) is a maximum:
x MAXT

Ed f
c w 2

() ---------- 7 /a) B (2-9)

x MAXT o
2

Equations (2-7) and (2-9) are combined to eliminate B
0

Ed f T ( W'/a)
c w 0

x MAXT 2 2
2CGJ +EI d (T?/a) 3

z C

Using equation (2-8) leads to:

2 *

Ed f (Y?/a) B
c w 0

( ------------------------- (2-11)
x MAXT

2 Et /9 - 13
CL CR

p.

Note that when B - 0 that this equation leads to an
0

indeterminate form of V since 3 - 3
x CL CR

The total maximum stress can now be described by:

(a) m(a) + P/A
x TOTAL x MAXT

where

39



P/A B

CR

Thus the yield stress has been shown to be:

B -(B) + ! (2-12)

y x MAXT CR

Using equation (2-11) in equation (2-12):

2 *

Ed f (V /a) B
C w

y CR
2 3/3 - 1

CL CR

(2-13)
2

Solving for 9 and dividing by 3 to place into
CR y

nondimensional form yields:

2 2*

1' 3CR\ - .3 Ed f ( V/a)B\/C\(L

Z,) ( N 23 Y. ,- \y

(2-14)

Choosing the smallest root and simplifying the equation

by introducing a slenderness ratio L:

L y

CL

4.



and letting 2

K17/a) Ed f B
ewO

A (2-16)

23
Y

Then :

2 2 2 2

CR (I + I/L + A) (1 + 1/L + A) 4/L

3 2

y (2-17)

A plot of S /f vs L for various values of A is
CR y

shown in figure (2-6). Figure (2-6) was compared with

various design criteria from reference (10) and it was

found that equation (2-17) was similar to design

equations of reference (10). However, the reduced

slenderness ratio, L, of reference (10) is based upon

simple Euler buckling and the geometric parameter, A,

is of course different. The column curves of reference

(10) were quite similar in appearance and range of

values to that found in figure (2-6).
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3. MODEL II - TORSIONAL BUCKLING UNDER AXIAL LOADS

3.1 DReveloment of the Strain Energy Egat ion.

Since Model II is the very simple case of a flat

bar stiffener, thin plate theory can be easily utilized

in the development of the strain energy equation. Much

of this section has been patterned after a similar

analysis presented in reference (3).

For a web plate of uniform thickness and a length a

the strain energy is repensented by (reference 5):

V =1/2 D 91 t(v + v )
w 0 o xx zz

2
2(1- )[v v - v 33 dx dz

xX ZZ xz

pa a
+ 1/2 CB dx

0

The second term represents the rotation of the

supporting plate structure modeled here as an elastic

spring. D is the flexural rigidity of the web plate.
w

From geometrical considerations:

v - zB

making a simple choice for B;

B - B sin (m Vx/a)
0

substituting into the expression for the strain energy

and integrating over a constant depth d results in:
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V D a d (Wtl/) B C d (u7'/a) S (1 -V) 3/12
w 0

2
+ CB a/4 (3-1)
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3.2 _.n12gmrat 2f the Virtual Work Eguat ion

As for Model I9 Model II is not assumed to be

perfect but rather to have initial imperfections. These

initial imperfections v w w , 6 and the additional

deformations v, w, and B are illustrated in figure

(3-1).

z

Y

Figure (3-1) Illustration of the initial imperfections
v*,w*,B* and additional deformations v,w.,B.

For the case of an inplane axial load, the work

equation is i

W a Jrf % u(ylz) dy dz

Fro figure (3-1), it can be shown that ,
2 2

* n- u + 1/2(v) + 1/2(w)
X x x x
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for a perfect web section. With imperfections, and

using the inextensibility assumption with regard to the

length of the stiffener setting 1 0 9, the result is :
x

-2 *2

u 1/2 (v + v ) + 1/2(w + w

a 2ma*2 *2

U 1/2 ) C(v + v ) + 1/2(w + w ) 3 dx
0 x x x x

(3-2)

where u - u(ygz)

As shown in figure (3-1), the geometrical

relationships (equations 2-1) are used to simplify

equation (3-2):

a 2 2 *
u(yz) - 1/2 Jo (z + y )(B + B ) dx

A simple choice is made for B and B

B B sin (mlIx/a)
0

B - B sin (mrtx/a)
0

Thus:
2 2 . 2

u(y.z) - 1/4(z + y )(B + B )(m)/a) a
0 0

The work equation now becomes:

2 2 * 2
W A 1J [ l/4(z + y )(B + B )(m7/a) a] dy dz

S4 0 0
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*2 2
W - 1/4 1 (B + B ) (mli/a) a I

x 0 0 p

• ~3-3 2)2tax_!natioli 91f Ifh2 Geial_ _ _ Bhi~ingl__S s-

Applying the calculus o0 variations with respect to

B to the work and strain energy equations yields:

*2 2

W = 1/2 V (B + B) (m/ 7 /a) aI B
x 0 0 p o

2 2 2
SV - {D a d (m7/a) B C d (m7/a)

w 0 2

+ 6(1 - V) 3/6 + CB a/2 } B
0 0

Applying the principle of minimum potential energys

7ThmSv - iw -ead
9W - &V

Solving for a = a :
e CR

2 2 2
D d(m?7/a) Cd (m76/a) + 6(1- V)3/3 + C B

W 0
-------.. . . . . . . . . . .

CR 29 *(m R-/a) I B + B

p 0 0

(3-3)

For the case of zero restraint against rotation;
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ii

2 2 2
D d(m''/a) Cd (m-/'la) + 6(1-N) )3 B

W 0
3 ------------------------------ -- -- ----------

CR
31 B +B

p 0 0
(3-4)

It is easily seen that the lowest 3 for this case
CR

results from the simplest of mode shapes, m1l.

When the rotational restraint is not equal to zero;

the lowest value of % depends upon the degree of
CR

rotational restraint:

3 1/4
M = (a/?) (3C/D d ) (3-5)

w

With the use of equation (3-5), m may be evaluated

and rounded up or down to the nearest integer for the

correct wave shape.

It is easily seen that as B becomes large 3
o CR

approaches a limit. Thus with (3 ) - a I
CR LIMIT CL

2 2 2
D d(m 7 /a) Ed (m776/a) + 6(1-Y)1/3 + C

CL 2
(m Irl.) I

p (3-6)

Figure (3-2) illustrates the behavior of V with
. CR

increasing B + B
0 0

Further simplification and rearranging of
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equations (3-3) and (3-6) prov.ides:

B
0

B - ---- -(3-7)

• 0
/ - 1

CL CR

SCR

B Bo + S

Figure (3-2) Behavior of t with B + B
CR o 0

The first yield load will not be determined for

this case under this method of analysis due to the

relative complexity of equation (3-3) and due to the

fact that the Perry-Robertson method will not lend

itself to further simplification along this train of

analysis. Since a simplified formula for design

purposes is the goal of this thesis, the next chapter

will use a different tactic to solve the problem.
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4. MODEL II -GENERALIZED ANALYSIS

4. 1 WV124 2f 8gg9g- h and atrain Energy ggdin

The analysis thus far for the case of a flat bar

stiffener under end loading has proceeded along the

lines of thin plate theory up to the development of an

expression for the critical buckling stress.

This chapter uses beam theory to develop a simpler

formulation in a manner analagous to that performed on

Model I in chapter 2. In fact, this analysis will

merely be a generalization of the results for Model I

applied to Model II. It must be remembered here that

Model I consisted of two unequal flanges with the top

flange deforming or rotating about the bottom flange.

At no time in the derivation of the formula for the

critical stress of the tee stiffener is there an

assumption made about the position of the top flange

relative to the bottom flange. Thus the same analysis

with minor changes will be performed for the flat bar

stiffener. However, in the case of the flat bar

stiffener of Model Ill there is a restraining effect

prvddby the juncture of the flat bar with the

plate. This in effect can be modeled as a spring with a

rotational constant C. Thus the strain energy equation

would have four terms (instead of the three terms for
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Model I). These terms represent (in order of

appearance) sideways bending; longitudinal warping;

torsion; and rotation of the supporting plate structure

modeled as an elastic spring. Thus the strain energy 2
equation is:

fa 2 2 a 2

V 1/2 CEI v + EC B + GJB + CB 3 dx
0 zX Wx XX X

Again choose:

B B sin(mW x/a)
0

Substituting and integrating results in:

2 2 4 2
V a 1/4 a B C E(I s + C )(m /a) + 6J(m '/a) + C 3

0 Z W

Applying the calculus of variations with respect to

B yields:
0

2 4
9V = 1/2 a B C E(Is + CE)(mT a ) 4

0 z w

+ GJ(mn7/a) + C 3 - B (4-1)
0

4.2 The i gggtio

The assumptions used in deriving the work equation

for Model X are the same as for Model II. Thus from

chapter 2 we have:

p W 1/4 0 (B + B) (m ' /a) a I
a 0 0 p

I-



- - - + - . . ,- -;- . = - -- , -_ _ -,- _ --

II

and
W =1/2 (B + B*)(m-l/a)2 a I B-

a 0 o p 0

(4-2)

4. 3 Dkg_ i at&on of the d ci_ca1 _.mVLin _srtejsSM

Using equations (4-1) and (4-2) and applying the

principle of minimum potential energy and solving for

the stress yields (with B )- :
e CR

2 4 2
E(I s + -C )(m1)/a) + GJ(mTr/a) + C B

z W 0

CR 2*
(m"/a)I B + B

p 0 0 -

(4-3)

Let '
24 2

EC(I s + C )(m/7/a) + BJ (m ilra) ~

CL 2

p
Using (4-4) in equation (4-3) and solving for B

0
yields:

B

B - . . . . .(4-5)
0

3 /3 - 1

CL CR

Comparison of equation (4-3) with equation (2-1)
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reveals the only difference is that equation (4-3) has

an additional term in the numerator (specifically the

spring constant C).

Since it is very difficult to quantify the spring

constant C and (hopefully) since its value is small in

comparison to other terms in expression (4-3), C will

be set to zero value and ignored for the remainder of

this analysis.

Thus for the case of C = 0, equation (4-3) reduces

to equation (2-2).

4.4 DeterfminAt_ of tb Eirst Yield Load.

The determination of first yield load for the

generalized case proceeds in a similar fashion as for

the case of Model I.

Again the total torque consists of two parts

(reference 1), St. Venant's torque and a warping

torque. However, in this case the warping torque is

(reference 2):

T - -EI d w

w z xxx

and

w - dB
x x

resulting in
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a
T - -EI d B

w Z XXX

Thus the total torque is:
2

T - 6JB - El d B
N Z KXX

Choosing B and T:

B - B sin(mrx/a)

T - T cos(mix/a)
0

Leavesi 2 Tl)21
T - (71/a)[SJ + EI d (f/a) 3 B (4-6)
o 2 0

Using equation (4-5) to eliminate B leaves:
0

B
2 2 0

T ()?/a)CGJ + El d ( 77 /a) 2 ------

0 Z
(3 /3 - 1)
CL CR

(4-7)

Again sectional considerations can be used to

evaluate the maximum stress. The maximum stress

developed in the stiffener due to the torque is now:

2
( ) -- Ed B

x I4AXT xx

Application of the above definition of B and a

choice of x such that (3) is a maximum leavest
x MAXT

2
(a) "Ed (''/a) B

Lx MAXT o
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Using equation (4-6) to eliminate B u
am 0

2
Ed T (7"7 /a)

0
(I- --------.. (4-6)

x MAXT 2 2xSJ + El d (7/a) 3
z

Using equation (4-7) in equation (4-8) leads to:

B2 2 o

(a) - Ed (//a) -(4-9)
x MAXT

(3E /3 - 1 )
CL CR

Again, from sectional considerations, the total

maximum stress can be described by:

I (3) +3 (4-10)
y x MAXT CR

Using equation (4-9) in equation (4-10), solving for
2

a and dividing by V to place into nondimensionalCRy

form yields:

2 2 2.
a Ed (-I-ra) B\3

CRCL oil C
-- -- - ------- + .

y y j) y
(4-11)

Choosing the smallest root and simplifying the

equation by the use of the reduced slenderness ratio

(equation 2-15) but redefining parameter A as:
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(1 r/a) Ed B
0

y

Results in (equation 2-17):

2 2 2 2
.9 (1 + /L + A) (I1+ IlL + A) -4/L
CR I

y

(4-13)

56



5. COMPARISONS WITH OTHER STUDIES.

5.1 Q2M24ris n betwe_n Thin Plate and lea !hoX

In chapter 3, the critical buckling stress of a

flat bar stiffener was derived through the use of thin

plate theory:

22 2
D d(m)/a) Cd (m7/a) + 6(1-V))3/3 + C B

w; 0

CR 2 *
(m /a) I B + B

p o a

(3-3)

In chapter 4, the critical buckling stress of a

flat bar stiffener was found using one dimensional beam

theory i

2 4 2

E(I s + C )(m7?/a) + SJ(m7/a) + C B
z N 0

£ ---- --- -------- -

CR 2 *
(mi/a) I B + B

p o o

(4-3)
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It should be noted here that when:

22 2-
D d(m /la) Cd (m Vrla) + 6(1-V)]/3 -

w

2 4 2
E(I s + C )(m Tr/a) + GJ(mT/a)

z w

the agreement between the two methods would be exact.

For the elastic range of experimentation and with:
3

Et
w

D 6 E/2(1+V) - E/2.6
w

3 3

I (d t )/12 J - (d t )/3
z w w w w

d d 9 0.3
w

The above relationship reduces to:

2 2 2 2

d (m 77/a) 1 d (m I'/a) 1

+ --7----+ ---

10.92 2.6 12 7.8

(Thin Plate Theory) (Beam Theory)

From a cursory examination it would appear that the

Thin Plate Theory results (equation 3-3) will probably

give a larger value for the buckling stress for the

normal range of stiffener dimensions used in ships. To

test this hypothesis, the dimensions of a flat bar
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stiffener used in experiment #21 of reference (6) will

be used.

where:

d =87.4 cm

a =730 cm
~m 1

For the thin plate theory:

2 2

d (mlr/a) 1
w

+ --- = 0.398

10.92 2.6

For the beam theory:

2 2
d (m Ti-/a) 1
w

.+ 0.14

12 7.8

Thus, within the elastic range, the thin plate

theory results would indeed provide higher buckling

stress. The beam thoery results may thus be too

conservative. Howver, section 5.3 shows good agreement

between equation (4-11) (first yield load) and

experimental yield results.

I-
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5.2 QMACIM2 Li Eg1ilftnd oMu IML

Reference (3) performed a similar analysis to that

performed in this thesis but without the inclusion of

initial geometric imperfections.

For the case of a Tee stiffener subjected to an

axial load, equation 21 of reference (3) allows (in the

notation of this thesis):

2 2 2
BJ + E(I s + C )(m -P/a) + C(a/m-r)

z W

CR
I

P

Equation (2-2) of this thesis, for a Tee stiffener

in an analysis which ignores the contribution of the

web and includes the contributions of initial defects,

is:

2 2
CE(I s + C )(M ?I/a) + J3 B

z w o

CR *
I B +B
p 0 0

Thus equation (2-2), for the case of an initially

perfect Tee stiffener reduces to equation 21 of

reference (3) when the rotational restraint is held to

Be



be zero. However, it must be noted that since the

physical models of the two derivations were slightly

different - namely that the model used in this analysis

consisted of two unequal flanges - some of the -

parameters of the equations will have different values

(ie. I , J etc.).
z

For the case of a flat bar stiffener, equation 22

of reference (3) has:

22 2

D dC(m7/a) d + 6(1- )3 C(a/mfl)
w

--------------------------------- -----

CR
31

p p

From chapter 4, equation (4-3):

2 4
ECI s + C )(^'/a) + GJ (m .J?/a)+C

z w 0
S ---------------------------------------- ---- --

CR2

3 I (m7/a) 
B +-B

P 0 0

The following is a comparison for a Tee stiffener

and a flat bar stiffener which was presented irn

reference (3). Figure (5-1) from reference (3) shows

the geometric dimensions of the Tee and flat bar

stiffeners. Table (5-1) shows how equations 21 and 22

of reference (3) and equations (2-2) and (4-3) of this

thesis compare with a finite element analysis performed

61
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using a computer program developed and documented at

the University of California (reference 12).

4
Flat Bar (6 /E) x 10 C e

CR

FEM EQN(22) EQN(4-3)

m - 1 6.44 6.42 6.28

M a 2 7.58 7.51 7.03

4

Tee (a /E) x Is C 0
CR

FEM EQN(21) EQN(2-2)

M - 1 26.4 26.3 30.69

* - 2 65.9 72.6 89.4

Table (5-1) Comparison with Published Formulae
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Figure (5-1) Stiffener Geometries for

Comparative Solutions
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The U.S. Navy has in the past used similar

formula as those presented here for the determination

of critical buckling stresses. For the critical

buckling stress of a Tee stiffener, in the notation of

this thesis from reference 13 we have:

2
6J + (mV/a) EC

----------

CR
I
P

where here:

32 33
C = f d t /12 + d t
-w w f w

3 a 3
I d t /3 +d f t + f t
p w ww wf

This is very similar to those results determined by

reference (3), with the exception that the above

formula does not account for the rotational restraint

provided by the junction of the web and plate. Also I

P
is much simplified here and C , the torsion-bending

w 2
constant, equates to the quantity (I s + C ) of

z w
reference (3) - but also somewhat simplified.
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5.3 __wn9Aii22M with Ex22rimental 2esu lts

Reference (6) provides insight into the torsional

buckling process through the experimental results

published there. This report describes model tests on

the collapse and post failure strength of Tee struts

simulating flat bar stiffeners in a stiffened plate.

The T struts were subjected to an axial load up to and

beyond failure. The geometrical imperfections of the

models were also recorded. The researchers of reference

() (of Det norske Veritas) are to be lauded for the

thoroughness and completeness of their report,

particularly in the treatment of the experimental data.

Table (5-2) contains the model data pertaining to

this analysis for ten experiments of reference (6).

Figures (5-2 to 5-11) show the load- deflection curves

for these ten experiments. The solid line represents

the experimental data. Point A of each of these graphs

represents the first yield load point as determined by

equation (4-11).

Notice that there is very good correlation between

the experimental first yield load point and the results

of equation (4-11).
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Model a h t B v 3 3
w y CR u

21 703 87.4 4.0 1.67E-02 256 233 230

22 703 87.3 4.0 5.6E-03 271 263 246

23 783 87.7 4.0 1.1SE-02 273 257 234

24 703 87.7 4.0 6.0E-03 271 262 240

25 703 87.7 4.0 8.OE-03 272 260 230

26 703 87.7 4.0 8.OE-03 256 244 243

27 703 87.4 4.0 6.OE-03 266 257 272

28 703 88.0 4.0 7.99E-03 256 244 241

29 703 87.8 4.0 4.96E-03 259 252 218

30 703 88.1 4.0 1.26E-02 271 253 230

Notation:

a - length of model (cm)

h - height of stiffener (cm)

t - thickness of stiffener (cm)
w

B - angle of rotation (radians)
0

2

- yield stress (Nlmm)
y 2

- first yield load stress (N/mm)
CR

2
0 - ultimate stress (experimental results)(N/mm )

U

Table (5-2) Data of Model Tests
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Figure (5-2) Model Test *21 of Reference (6)
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6. CONCLUSIONS

This thesis utilized a design approach to tackle

the problem of torsional buckling of stiffeners with a

good deal of success. Integrated into all phases of

this analysis was a consideration of the geometric

imperfections of the stiffener - both Tee and flat bar.

These structural members were analyzed as simplified

sect ions and the Perry-Robertson approach used in other

areas of engineering was successfully applied here.

Chapter 5 showed that the derived results of this

thesis reduced to currently published formulae for the

case of the perfect stiffener. The contribution of this

thesis is that the initial imperfections were taken

into consideration, using a simple design approach, in

the derivation of the results presented here.

Also shown in chapter 5 was a generally good

correlation between results of this thesis and axial

load tests on flat bar stiffeners. Comparison of the

Toe stiffener formula with experimental data, which

measures and reports initial imperfections, needs to be

performed. Also,, comparisons should be made with other

tests on flat bar stiffeners in more dimensional ranges

to determine the range of validity for the results

derived here.
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Further work needs to be done in this area.

Specifically, determination of the critical buckling

stress and first yield load due to lateral loading.

Also, a simplified method of handling the mode

interactions of combined lateral and axial loadings is

needed. In addition, it is an asset to understand from

the work reported in references (6) and (15) that the

falling path of the load-deflection curve (figure 6-1)

is represented by the tripping mechanism which is not

covered in this analysis.
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